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1. Introduction

The Gibbs sampler has its origin in digital image processing and was introduced

by Geman and Geman [GG] in 1984 for the Gibbs distribution. It was only in

1990 that Gelfand and Smith [GS] discovered that the Gibbs sampler works for

other distributions as well.

The general idea of the Gibbs sampler is to approximate the modes and mar-

ginal distributions of an unknown distribution p (ω), where ω = (ω1, . . . , ωn), by

successively taking samples from the known conditional distributions

pi = p (ωi | ωj, j ̸= i).

The actual algorithm works as follows:

(1) Set j = 0 and set initial values ω(0) =
(
ω
(0)
1 , . . . , ω

(0)
n

)
.

(2) For 1 ≤ i ≤ n obtain samples

ω
(j)
i ∼ p

(
ω1 | ω(j)

1 , . . . , ω
(j)
i−1, ω

(j−1)
i+1 , . . . , ω(j−1)

n

)
from the conditional distributions and, therefore, a new value ω(j).

(3) Increase j by 1 and continue with step 2.

Since the new values depend only on the immediately preceding ones, we clearly

have a Markov process.

The Gibbs sampler was first used in digital image processing, an application

we look at in sections 2 and 5.

In section 3 we will look at Markov random fields and Gibbs distributions and

see how they are related to each other. The most important result in this section

is that they are in fact equivalent.

We will see in section 4 that the Gibbs sampler converges to the unknown

joint distribution p (ω), and we will introduce the process of annealing, that is,

gradually reducing the temperature of the system to speed up convergence.

In section 6 we will generalise the results from section 4 and show that the

Gibbs sampler works for other distributions as well. We will introduce two other
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related algorithms, the data-augmentation algorithm, which approximates the

joint distribution given the conditional distributions, and the substitution sam-

pling algorithm, which is very close related to the Gibbs sampler.

2. Digital Image Processing

Geman and Geman [GG] developped the Gibbs sampler to restore degraded

digital (grey scale) images. Suppose the image has the size m ×m pixels, then

let Zm = {(i, j) | 1 ≤ i, j ≤ m} denote the set of all possible co-ordinates of the

image, also called the integer lattice. Let F = (Fi,j)(i,j)∈Zm
denote the matrix

of pixel intensities of the original image and G = ϕ (H (F )) ⊙ N the matrix of

the degraded image. Here we allow blurring, noise and some nonlinearities. The

function ϕ is nonlinear, H is a linear blurring function and N an independent

Gaussian white noise. The operator ⊙ is any invertible operator. On the pixel

level we write

Gi,j = ϕ

 ∑
(k,l)∈Zm

H (i− k, j − l)Fk,l

⊙ νi,j (2.1)

for (i, j) ∈ Zm.

The original image is a pair X = (F,L) with F as above and L a matrix of

unobservable edge elements. These edge elements link horizontally or vertically

neighboured pixels and can only have two states; either an edge is present or it

is not.

Definition 2.1. For any finite set S define a neighbourhood system as a map

N : S → P (S) , i 7→ Si ⊆ S

such that i ̸∈ Si for all i ∈ S, and i ∈ Sj iff j ∈ Si. The elements of Si are called

the neighbours of i.

The pair (S,N ) can be seen as a graph with nodes S and arcs N .
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Definition 2.2. A Markov Random Field (MRF) over the (not necessarily

finite) graph (S,N ) is a stochastic process (Xs)s∈S such that

P (X = ω) > 0 (2.2)

and

P (Xs = ωs | Xt = ωt, t ̸= s) = P (Xs = ωs | Xt = ωt, t ∈ Nt) (2.3)

for all realisations ω of X. The expressions on the left hand side of (2.3) are

called local characteristics.

Note that in the case of digital image processing there is only a finite number

of realisations for X, namely L|Zm|, where L is the number of possible grey levels.

This is usually rather big; for example, take a black/white image with 64 × 64

pixels, then L|Zm| = 264×64 = 24096
.
= 0.1044388305× 101234.

The MRF is a multidemensional generalisation of the definition of a Markov

chain (Xn)n∈N0
; take S = N0 and Nn = {n− 1, n+ 1} and use the following

Remark 2.3. The Markov chain property

P (Xn = ωn | X0 = ω0, . . . , Xn−1 = ωn−1) = P (Xn = ωn | Xn−1 = ωn−1)

is equivalent to

P (Xn = ωn | X0 = ω0, . . . , Xn−1 = ωn−1, Xn+1 = ωn+1, . . .) =

P (Xn = ωn | Xn−1 = ωn−1, Xn+1 = ωn+1) .

So all results we will find for MRFs are as well valid for Markov chains.

To prove this, first assume the one-sided Markov property. Therefore we can

transform the joint distribution into

P (X = ω) = P (X0 = ω0)
∞∏
s=1

P (Xs = ωs | Xs−1 = ωs−1) (2.4)
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and use the definition of the conditional distribution to get

P (Xn = ωn | X0 = ω0, . . . , Xn−1 = ωn−1, Xn+1 = ωn+1, . . .) =

P (X = ω)

P (X0 = ω0, . . . , Xn−1 = ωn−1, Xn+1 = ωn+1, . . .)
=

P (X = ω)∑
ω′ P (X0 = ω0, . . . , Xn−1 = ωn−1, Xn = ω′, Xn+1 = ωn+1, . . .)

.

Using (2.4) and cancelling out all possible factors then gives

P (Xn = ωn | Xn−1 = ωn−1) P (Xn+1 = ωn+1 | Xn = ωn)∑
ω′ P (Xn = ω′ | Xn−1 = ωn−1) P (Xn+1 = ωn+1 | Xn = ω′)

=

P (Xn = ωn, Xn+1 = ωn+1 | Xn−1 = ωn−1)∑
ω′ P (Xn = ω′, Xn+1 = ωn+1 | Xn−1 = ωn−1)

=

P (Xn = ωn, Xn+1 = ωn+1 | Xn−1 = ωn−1)

P (Xn+1 = ωn+1 | Xn−1 = ωn−1)
=

P (Xn = ωn | Xn−1 = ωn−1, Xn+1 = ωn+1)

by applying the definition of the conditional distribution once more.

Now assume the two-sided Markov property. First note that

∑
ωn+2,...

P (Xn+1 = ωn+1, . . .) =

∑
ωn+2,...

P (Xn+1 = ωn+1) P (Xn+2 = ωn+2, . . . | Xn+1 = ωn+1) =

P (Xn+1 = ωn+1)
∑

ωn+2,...

P (Xn+2 = ωn+2, . . . | Xn+1 = ωn+1) =

P (Xn+1 = ωn+1)
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Using this fact and the Theorem of Total Probability we write

P (Xn = ωn | X0 = ω0, . . . , Xn−1 = ωn−1) =∑
ωn+1,...

P (Xn = ωn, . . . , Xn−1 = ωn−1, Xn+1 = ωn+1, . . .) P (Xn+1 = ωn+1, . . .) =

∑
ωn+1

P (Xn = ωn | Xn−1 = ωn−1, Xn+1 = ωn+1) P (Xn+1 = ωn+1) =

P (Xn = ωn | Xn−1 = ωn−1) ,

which is the one-sided Markov property.

Definition 2.4. We call a subset C ⊆ S a clique if i ∈ Nj for all i, j ∈ C with

i ̸= j, that is, every pair of distinct elements in C are neighbours. Let C denote

the set of all cliques.

We assume that F is an MRF over (S,F) for some suitable set S and neigh-

bourhood system F , which are usually one of the following cases.

Case 1: Take S = Zm and

F = Fc = {Fi,j | (i, j) ∈ Zm}

with

Fi,j =
{
(k, l) ∈ Zm | 0 < (k − i)2 + (l − j)2 ≤ c

}
.

Some examples for 1 ≤ c ≤ 8 are shown in Figure 1. The symbol • stands for a

neighbour of the symbol ◦.

Case 2: Take S = Dm the dual lattice, that is, the set of all co-ordinates of L,

the matrix containing the links between pixels. Define a neighbourhood system

L = {Ld | d ∈ Dm} in which each Ld contains six elements like those denoted by

an × in Figure 2 for the × in the middle. Between two pixels there might or

might not be a link; the right side of Figure 2 shows a realisation of by a binary

line process randomly allocated links.
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c=1 c=4c=2,3 c=5,6,7 c=8

Figure 1. Neighbourhood system for 1 ≤ c ≤ 8

Figure 2. Dual lattice

Case 3: Take S = Zm ∪ Dm and the neigbourhood systems F1, also called

nearest-neighbour system, for Zm and the system L defined in case 2 for Dm.

Additionally, an element of Zm is a neigbour of an element of Dm when they are

adjacent.

In the following section we will see that this is equivalent to F having a Gibbs

distribution. The example of digital image processing is continued in section 5.

3. Markov Random Fields and Gibbs Distributions

In this section we will have a closer look at MRFs and the Gibbs distribution.

Most of the results stated here are from [GG] as well.
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Definition 3.1. Given a graph (S,N ) and a realisation space Ω = ΛS , where

Λ = {0, . . . , L− 1} is the state space of the single co-ordinates, a Gibbs distri-

bution relative to (S,N ) is given by

p (ω) =
1

Z
e−U(ω)/T

for ω ∈ Ω, where T is a constant, the temperature of the system, U the energy

function given by

U (ω) =
∑
C∈C

VC (ω),

the function VC (ω) is independent of co-ordinates ωs with s ̸∈ C, and Z is a

normalising constant as we require
∑

ω∈Ω p (ω) = 1, so

Z =
∑
ω∈Ω

e−U(ω)/T .

The set {VC | C ∈ C} is called a potential.

The modes of the distribution do not depend on the choice of T . Let

pT (ω1) > pT (ω2) for some ω1, ω2 ∈ Ω. That is, −U (ω1) /T > −U (ω2) /T . Mul-

tiplying by T/S gives −U (ω1) /S > −U (ω2) /S and therefore pS (ω1) > pS (ω2)

for all S > 0.

In particular, if S < T and ω0 a mode of pT and pS, then for any ω ∈ Ω we

have pT (ω0) ≥ pT (ω) or U (ω0) ≤ U (ω). From this we get

1

pT (ω0)
=

ZT

e−U(ω0)/T
=

∑
ω∈Ω e

−U(ω)/T

e−U(ω0)/T
=
∑
ω∈Ω

e−U(ω)

e−U(ω0)
=

∑
ω∈Ω

e(U(ω0)−U(ω))/T ≥
∑
ω∈Ω

e(U(ω0)−U(ω))/S =
1

ps (ω0)
,

that is, pS (ω0) ≥ pT (ω0). So the modes increase with decreasing temperature.

Lemma 3.2. With Umin = min {U (ω) | ω ∈ Ω}, the minimal energy, and

Ωmin = {ω ∈ Ω | U (ω) = Umin}, the states of minimal energy in Ω, we even
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have

lim
T→0+

p (ω) =

1/ |Ωmin| , ω ∈ Ωmin

0, ω ̸∈ Ωmin

and

lim
T→∞

p (ω) = 1/ |Ω|

for all ω ∈ Ω.

Proof. To prove the first equality let ω0 ∈ Ωmin. Keeping in mind that Ω is finite

we then have

lim
T→0+

1

p (ω0)
= lim

T→0+

∑
ω∈Ω

e(U(ω0)−U(ω))/T =

lim
T→0+

( ∑
ω∈Ωmin

e(U(ω0)−U(ω))/T +
∑

ω ̸∈Ωmin

e(U(ω0)−U(ω))/T

)
=

lim
T→0+

(
|Ωmin|+

∑
ω ̸∈Ωmin

e(U(ω0)−U(ω))/T

)
=

|Ωmin|+
∑

ω ̸∈Ωmin

lim
T→0+

e(U(ω0)−U(ω))/T =

|Ωmin|+
∑

ω ̸∈Ωmin

e−∞ = |Ωmin| .

Now consider the case ω0 ̸∈ Ωmin. Then

lim
T→0+

1

p (ω0)
= lim

T→0+

∑
ω∈Ω

e(U(ω0)−U(ω))/T ≥

lim
T→0+

e(U(ω0)−Umin)/T = elimT→0+ (U(ω0)−Umin)/T = e∞ = ∞.

Similarly we prove the second equality.
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lim
T→∞

1

p (ω0)
= lim

T→∞

∑
ω∈Ω

e(U(ω0)−U(ω))/T =

∑
ω∈Ω

elimT→∞ (U(ω0)−U(ω))/T =
∑
ω∈Ω

e0 = |Ω| .

�

The idea is to cool down the system by decreasing the temperature T and

therefore find the modes more easily through sampling. The principle is similar

to simulated annealing, see [Gam] or [Mat], with the difference that the cooling

there is used to stabilise the system at the lowest energy level.

Theorem 3.3. The local characteristics defined by (2.2) uniquely determine

p (ω) = P (X = ω) in case p (ω) > 0 for all ω ∈ Ω.

Proof. This is proved in [Bes]. Let ω and ψ be two realisations of X. To simplify

the notation, let s = |S|, then write ω = (ω1, . . . , ωs) and ψ = (ψ1, . . . , ψs). We

will prove by induction that

p (ω)

p (ω1, . . . , ωs−n, ψs−n+1, . . . , ψs)
=

n−1∏
i=0

p (ωs−i | ω1, . . . ωs−i−1, ψs−i+1, . . . , ψs)

p (ψs−i | ω1, . . . ωs−i−1, ψs−i+1, . . . , ψs)

(3.1)

for all 0 ≤ n ≤ s. For n = 0 we have p (ω) /p (ω) = 1, which is obviously true.

So assume (3.1) is true for n. We know that

p (ω1, . . . , ωs−n, ψs−n+1, . . . , ψs) =

p (ωs−n | ω1, . . . , ωs−n−1, ψs−n+1, . . . , ψs) p (ω1, . . . , ωs−n−1, ψs−n+1, . . . , ψs) (3.2)

and that

p (ω1, . . . , ωs−n−1, ψs−n, . . . , ψs) =

p (ψs−n | ω1, . . . , ωs−n−1, ψs−n+1, . . . , ψs) p (ω1, . . . , ωs−n−1, ψs−n+1, . . . , ψs) ,
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which we rewrite to

p (ω1, . . . , ωs−n−1, ψs−n+1, . . . , ψs) =
p (ω1, . . . , ωs−n−1, ψs−n, . . . , ψs)

p (ψs−n | ω1, . . . , ωs−n−1, ψs−n+1, . . . , ψs)
.

(3.3)

Inserting (3.3) into (3.2) yields

p (ω1, . . . , ωs−n, ψs−n+1, . . . , ψs) =

p (ωs−n | ω1, . . . , ωs−n−1, ψs−n+1, . . . , ψs)

p (ψs−n | ω1, . . . , ωs−n−1, ψs−n+1, . . . , ψs)
p (ω1, . . . , ωs−n−1, ψs−n, . . . , ψs) .

Noticing that the fraction is the factor for i = n on the right hand side of (3.1)

we insert this and rewrite it to

p (ω)

p (ω1, . . . , ωs−n−1, ψs−n, . . . , ψs)
=

n∏
i=0

p (ωs−i | ω1, . . . ωs−i−1, ψs−i+1, . . . , ψs)

p (ψs−i | ω1, . . . ωs−i−1, ψs−i+1, . . . , ψs)
,

which proves (3.1) is true for all n. In particular, if we set n = s, (3.1) yields,

after renumberig the factors,

p (ω)

p (ψ)
=

s∏
i=1

p (ωi | ω1, . . . ωi−1, ψi+1, . . . , ψs)

p (ψi | ω1, . . . ωi−1, ψi+1, . . . , ψs)

for all ω, ψ ∈ Ω. Using the fact that
∑

ω∈Ω p (ω) = 1 we can write

1

p (ψ)
=
∑
ω∈Ω

p (ω)

p (ψ)
=
∑
ω∈Ω

s∏
i=1

p (ωi | ω1, . . . ωi−1, ψi+1, . . . , ψs)

p (ψi | ω1, . . . ωi−1, ψi+1, . . . , ψs)
.

Therefore we have the representation

p (ψ) =

(∑
ω∈Ω

s∏
i=1

p (ωi | ω1, . . . ωi−1, ψi+1, . . . , ψs)

p (ψi | ω1, . . . ωi−1, ψi+1, . . . , ψs)

)−1

(3.4)

for all ψ ∈ Ω, which depends only on the local characteristics. �

In practice, however, this representation of the probability measure as a func-

tion of the local characteristics is not very useful as Ω is a very large set in all

interesting cases. We also need to determine whether a given set of local char-

acteristics matches some distribution. To avoid these problems we will use the

following
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Theorem 3.4. If N is a neigbourhood system on S then X is an MRF over

(S,N ) iff p (ω) is a Gibbs distribution relative to (S,N ).

Proof. This proof is taken from [KS]. Let p be a Gibbs distribution relative to

(S,N ). Then

p (ω) =
1

Z
e−U(ω)/T =

1

Z
e−

∑
C∈C VC(ω)/T . (3.5)

The Theorem of Total Probability yields

p (ω) =
∑

ω′:ω′
t=ωt,t̸=s

p (ω′) p (ωs | ωt, t ̸= s)

for all s ∈ S and therefore

p (ωs | ωt, t ̸= s) =
p (ω)∑
ω′ p (ω′)

.

So we have, using (3.5),

p (ωs | ωt, t ̸= s) =
e−

∑
C∈C VC(ω)/T∑

ω′ e−
∑

C∈C VC(ω′)/T
. (3.6)

For a clique C that does not contain s we have VC (ω) = VC (ω′) since the ω′ may

only differ from ω in t. So all these cancel in (3.6) such that p (ωs | ωt, t ̸= s)

depends only on t and its neighbours. Therefore p defines an MRF.

The other direction of this equivalence involves much more. Proofs using

Möbius inversion can be found in [Pre] and [Gri]. A proof making use of the

Hammersley-Clifford expansion can be found in [Bes]. �

Now we are able to specify MRFs by specifying potentials instead of local

characteristics, which is a lot easier. In fact, we can convert potentials into local

characteristics and vice versa by making the the possible cancellations in (3.6)

and obtaining

p (ωs | ωt, t ̸= s) =
1

Zs

e−
∑

C: s∈C VC(ω)/T (3.7)

with

Zs =
∑
ω′

e−
∑

C: s∈C VC(ω′)/T =
∑
x∈Λ

e−
∑

C: s∈C VC(ωx)/T , (3.8)
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where ωx denotes the configuration which agrees with ω everywhere except s,

where it is x. These formulae are used when describing the Gibbs sampler with

given potentials in the following sections.

4. The Gibbs Sampler for Gibbs Distributions

In this section we will define the Gibbs sampler and see why it works. The

proofs of the theorems in this section can be found in the appendix of [GG].

To estimate the original data we use maximum a posteriori estimation, a form

of Bayesian estimation, in which we maximise the the posterior distribution

P (X = ω | G = g). We know that X is Gibbs distributed, so the problem re-

duces to minimise U with given data g.

First we need to bring the nodes of S into an order in which we will visit them

to apply the new state to them. So let (nt)t∈N denote this sequence of sites. Let

Xs (t) denote the state of node s after t replacement opportunities. We assume

that every site is visited infinitely often and hence get the following result about

convergence.

Theorem 4.1 (Relaxation). Assume that for each s ∈ S the sequence (nt)t∈N

contains s infinitely often. Then for any starting configuration ψ ∈ Ω and every

ω ∈ Ω we have

lim
t→∞

P (X (t) = ω | X (0) = ψ) = p (ω) .

Until now we have kept the temperature of the system constant. But we have

already seen that a decreasing temperature exaggerates the modes of the Gibbs

distribution and therefore speeds up the convergence process. The process of

cooling down the system is called annealing. It is easy to modify the Gibbs

sampler with an annealing schedule. Let pT denote the Gibbs distribution de-

pendent on temperature T , and T (t) the temperature of the system at step t.
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Recall that Ωmin is the set of lowest energy configurations and define the distri-

bution pmin as the uniform distribution on Ωmin. Finally, define U
⋆ = maxω U (ω)

and U⋆ = minω U (ω) as well as the difference ∆ = U⋆ − U⋆.

Theorem 4.2 (Annealing). Assume that there exists an integer τ ≥ |S| such

that S ⊆ {nt, . . . , nt+τ−1} for all t ∈ N. Let T (t) be a decreasing sequence of

temperatures such that

lim
t→∞

T (t) = 0

and

T (t) ≥ |S|∆
log t

for all t ≥ t0 for some t0 ≥ 2. Then for any starting configuration ψ ∈ Ω and

every ω ∈ Ω we have

lim
t→∞

P (X (t) = ω | X (0) = ψ) = pmin (ω) .

Altogether we now have all information needed to describe the Gibbs sampling

algorithm (for the Gibbs distribution):

(1) Initialise
(
ω
(0)
s

)
s∈S

with the given data. Set t=1.

(2) Update value T (t).

(3) Maximise U.

(4) Get samples for each site s ∈ S separately using (3.7) and (3.8), and get

ω(i) from them.

(5) Increase t by 1 and continue with step 2.

5. Digital Image Processing (Continued)

We will use the powerful results about MRFs and the Gibbs distribution for

further examination of the problem stated in section 2 and quote experimental

results on the restoration of images.

We are interested in the posterior distribution P (F = f, L = l | G = g) with

given degraded image g. We take S = Zm ∪ Dm from case 3 in section 2, the
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collection of pixel and line sites. We assume that X = (F,L) is an MRF relative

to (S,N ) for some neighbourhood system N . For convenience take T = 1, so we

have, according to Theorem 3.4,

P (F = f, L = l) =
1

Z
e−U(f,l)

and

U (f, l) =
∑
C∈C

VC (f, l)

for some potential {VC}.

Recall that G = ϕ (H (F )) ⊙ N . As ⊙ is invertible, we denote the inverse by

N = Φ(G, ϕ (H (F ))) = (Φs)s∈Zm
. For s ∈ Zm let Hs ⊆ Zm denote the pixels

that affect the blurred image H (F ) at s. For example, we choose the co-ordinates

H (k, l) =


1
2
, (k, l) = (0, 0)

1
16
, |k| , |l| ≤ 1, (k, l) ̸= (0, 0)

0, else

,

that is, the pixels of the blurred image are a mixture of the surrounding 3 × 3

pixels; Hs is this 3× 3 square centered at s. From (2.1) and the definition of Hs

we see that Φs = νs depends only on gs and {ft | t ∈ Hs}. Since H is linear and

therefore shift-invariant we have Hr+s = Hr + s as long as none of these crosses

the image boundaries, that is, Hr ⊆ Zm and s + r ∈ Zm. To avoid problems at

the edges of the image we define Hr + s = {h+ s | h ∈ Hr} ∩ Zm. Further, we

assume that H is symmetric, that is, r ∈ H0 iff −r ∈ H0. All these properties

are reasonable as H is a blurring matrix and hence should operate equally on

different spots of the image and independent of symmetries.

Lemma 5.1. The families (Hs \ {s})s∈Zm
and (H2

s \ {s})s∈Zm
, where H2 denotes

the second-order system, that is, H2
s =

∪
r∈Hs

Hr, are neighbourhood systems for

Zm.
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Proof. We have to show that r ∈ Hs iff s ∈ Hr for all s ̸= r. Shift-invariance and

symmetry straightforwardly yield r ∈ Hs iff r − s ∈ H0 iff s− r ∈ H0 iff s ∈ Hr.

For the second-order system we have to show that r ∈ H2
s iff s ∈ H2

r . Assume

that r ∈ H2
s. Then there exists some t0 ∈ Hs such that r ∈ Ht0 . By the first part

of the proof we also have s ∈ Ht0 , and in particular s ∈
∪

t∈Hr
Ht = H2

r . �

Lemma 5.2. Define N P =
(
N P

s

)
s∈S where

N P
s =

Ns, s ∈ Dm

Ns ∪H2
s \ {s} , s ∈ Zm

.

Then N P is a neighbourhood system on S. It is called posterior neigbourhood

system.

Proof. We will show that s ∈ N P
t iff t ∈ N P

s . All cases where s ∈ Ns and t ∈ Nt

follow directly from the fact that N is a neighbourhood system, as does the case

s ∈ H2
s and t ∈ Ht. We will show that the two remaining cases never occur.

Case 1: s ∈ Dm and t ∈ Zm \ Ns.

Assume s ∈ N P
t = Nt ∪ H2

t \ {t}. Then we know that s ∈ Nt and therefore

t ∈ Ns, a contradiction.

On the other hand, assume t ∈ N P
s = Ns ∪ H2

s \ {s}. Therefore t ∈ H2
s \ {s},

and, by Lemma 5.1, s ∈ H2
t \ {t}, a contradiction as well.

Case 2: s ∈ Zm and t ∈ Zm \ Ns.

Assume s ∈ N P
t = Nt ∪H2

t \ {t}. The case s ∈ H2
t \ {t} is already covered, so

assume s ∈ Nt. Then t ∈ Ns, a contradiction.

Now assume t ∈ N P
s = Ns ∪H2

s. Therefore t ∈ H2
s, and, as H2 is a neighbour-

hood system, s ∈ H2
t . This is one of the covered cases. �

Theorem 5.3. For given data g the posterior distribution P (X = ω | G = g) is

Gibbsian relative to
(
S,N P

)
with the energy function

UP (ω) = U (ω) + ∥M − Φ (g, ϕ (H (f)))∥2 /2σ2, (5.1)
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where M ∈ RZm is the matrix that is µ everywhere. Recall that µ and σ2 are

mean and variance of N .

Proof. The proof can be found in Section VIII of [GG]. �

Using the algorithm from section 4 we can now restore degraded images. A

computational problem, however, is the minimisation of UP . Since Ω is too

large to compute it exactly, we must at this point make use of another stochastic

method, the Metropolis algorithm (see [Gam] or [Mat]), which can approximately

optimise UP . Further, the algorithm can be speeded up on a parallel system when

appointing sites to different processors. In the optimal case we would have one

processor per site. Geman and Geman have done experiments with degraded

images with remarkably good success, which can be found in [GG].

6. The Gibbs Sampler in the General Case and Related

Algorithms

Until now we had the case that the conditional distributions p (ωi | ωj, j ̸= i)

were Gibbsian. We now want to generalise the Gibbs sampler for more arbitrary

distributions. Further, we introduce the data-augmentation algorithm by [TW]

and the substitution sampling algorithm by [GS].

6.1. The Data-Augmentation Algorithm. This algorithm is based on the

basic equations

p (θ | y) =
∫
p (θ | z, y) p (z | y) dz (6.1)

and

p (z | y) =
∫
p (z | ϕ, y) p (ϕ | y) dϕ. (6.2)

Substituting (6.2) into (6.1) yields

p (θ | y) =
∫
K (θ, ϕ) p (θ | y) dϕ, (6.3)
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with

K (θ, ϕ) =

∫
p (θ | z, y) p (z | ϕ, y) dz.

Let T be an integral operator defined by

Tf =

∫
K (·, ϕ) f (ϕ) dϕ.

It was shown by [TW] that under mild conditions which usually hold in practical

applications we can solve 6.3 by choosing some initial approximation p0 (θ | y)

and successively calculating

pi+1 (θ | y) = (Tpi) (θ | y) .

This integral usually cannot be solved analytically. Hence we use the Monte

Carlo method to calculate it in the algorithm.

Therefore the data-augmentation algorithm works as follows:

(1) Initialise p0 (θ | y). Set i = 1.

(2) Generate a sample z(1), · · · , z(m) from pi−1 (θ | y)

(3) Set

pi (θ | y) =
1

m

m∑
j=0

p
(
θ | z(j), y

)
.

(4) increase i by 1 and continue at step 2.

The proof for the algorithm can be found in [TW].

To illustrate the data-augmentation algorithm we examine an example on ge-

netic linkage, used by both [Lee] and [TW]. Assume that 197 animals are dis-

tributed multinomially into four categories y = (y1, y2, y3, y4) = (125, 18, 20, 34)

with cell probabilities (
1

2
+
θ

4
,
(1− θ)

4
,
(1− θ)

4
,
θ

4

)
.

To illustrate the algorithm, we augment the data y by splitting the first cell into

two, having cell probabilities 1/2 and θ/4. Therefore the augmented data set is
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given by x = (x1, x2, x3.x4, x5), where x1+x2 = y1, x3 = y2, x4 = y3 and x5 = y4.

Hence we have the likelihood function

p (y | θ) ∝ (2 + θ)y1 (1− θ)y2+y3 θy4 ,

and for the augmented data the much simpler likelihood

p (x | θ) ∝ θx2+x5 (1− θ)x3+x4 .

For the prior distribution of θ we choose a Be (1, 1) distribution or, what is the

same, a U [0, 1] distribution. For the posterior distribution we then get

p (θ | x) ∝ p (θ) p (x | θ) ∝ θx2+x5+1 (1− θ)x3+x4+1 ,

a Beta distribution as well. Therefore the algorithm has to be implemented as

follows:

• Obtain θ(i) from the current estimate of p (θ | y) for 1 ≤ i ≤ m.

• For each draw generate x
(i)
2 from a b

(
y1, θ

(i)/
(
θ(i) + 2

))
distribution to

obtain the augmented data.

• Set the posterior of θ equal to a mixture of the obtained Beta distributions,

that is,

p (θ | y) = 1

m

m∑
i=1

Be
(
x
(i)
2 + x5 + 1, x3 + x4 + 1

)
(θ) .

• Repeat this process with the new estimate.

The R source code for this example can be found in section A.1. Plots of the

estimates after 1, 10 and 50 executions of the algorithm can be seen in Figures 3, 4

and 5. These figures suggest that after 50 executions the estimate of the posterior

is close enough to the true posterior.

The algorithm can be further improved by initially choosing m small and grad-

ually increasing as the approximated distribution approaches the true one [TW].
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If we take three random variables instead of two we can write, analogous to

(6.1) and (6.2),

p (θ | y) =
∫ ∫

p (θ, x | z, y) p (z | y) dz dx, (6.4)

p (z | y) =
∫ ∫

p (z, σ | x, y) p (x | y) dx dσ (6.5)

and

p (x | y) =
∫ ∫

p (x, ϕ | ρ, y) p (ρ | y) dρ dϕ. (6.6)

Proceeding similar as before we can substitute (6.6) into (6.5), and this new

expression into (6.4). This provides us with an analogous, but much more com-

plicated, fixed point equation to (6.3) and a new integral operator, and the con-

vergence theorems from [TW] hold. Similarly it is possible to develop algorithms

for any finite number of random variables.

6.2. The Substitution Sampling Algorithm. As in the section before, first

look at the case of two random variables. Assume the conditional densities

p (x | z, y) and p (z | x, y) are known. Choose an arbitrary prior density p0 (x | y)

and draw a sample x(0) from it. Since p
(
z | x(0), y

)
is available, draw a sample

z(1) from it, and a sample x(1) from p1 (x | y) = p
(
x | z(1), y

)
. We repeat this

procedure and get a sequence
(
x(i), z(i)

)
i∈N. Now we use the fact that by (6.2)

pi (z | y) =
∫
p (z | x, y) pi (x | y) dx =∫
p (z | x, y) p

(
x | z(i−i), y

)
dx =

∫
p (z | x, y) pi−1 (x | z, y) dx

together with (6.1) yielding

pi (x | y) =
∫
p (x | ϕ, y) pi (ϕ | y) dϕ =∫

K (x, ϕ) pi−1 (ϕ | y) dϕ = (Tpi−1) (x | y) .
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Therefore this generation scheme converges according to the theorems from [TW].

For a natural number m generate m iid sequences like this. We call this scheme

substitution sampling algorithm.

When programming the substitution sampling algorithm we again use the

Monte Carlo integration and get the new estimates by

pi (x | y) = 1

m

m∑
j=1

p
(
x | z(i)j , y

)
and

pi (z | y) =
1

m

m∑
j=1

p
(
z | x(i−1)

j , y
)
.

Similar to the data-augmentation algorithm we can extend the substitution

sampling algorithm to more than two random variables, see [TW].

6.3. The Gibbs Sampler. We have an unknown distribution p (θ1, . . . , θd) with

known local characteristics pi (θi) = p (θi | θj, j ̸= i) with 1 ≤ i ≤ d. We set an

initial value θ0 as an arbitrary estimation of the mode of p and calculate θi for

i ∈ N according to the following scheme:

(1) Set j = 0 and set initial values θ(0) =
(
θ
(0)
1 , . . . , θ

(0)
d

)
.

(2) For 1 ≤ i ≤ n obtain samples

θ
(j)
i ∼ p

(
θ1 | θ(j)1 , . . . , θ

(j)
i−1, θ

(j−1)
i+1 , . . . , θ

(j−1)
d

)
from the conditional distributions and, therefore, a new value θ(j).

(3) Increase j by 1 and continue with step 2.

Clearly every site is visited infinitely often. As a neighbourhood system we

take the trivial one Ni = {1, . . . , i− 1, i+ 1, . . . , d}, so we have an MRF, and

therefore p (θ) is Gibbsian. So we can use the Relaxation Theorem 4.1 to verify

that the Gibbs sampling algorithm works.

If we want to obtain not just the modes, but the marginal densities, we must

make use of the same method as before to run the process m times separately
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and calculate the estimates by

p (θi0) =
1

m

m∑
k=1

p
(
θi0 | θ

(j)
i , i ̸= i0

)
.

Definition 6.1. If X ∼ Γa,b is gamma distributed with parameters a and b, then

we call X−1 ∼ Γ̄a,b inverse gamma distributed with parameters a and b.

As an example for how the Gibbs sampler works we will look at a Poisson

process with a change point, an example first given in [CGS] and quoted in

[Lee] and [Gam]. Given is a sample y = (y1, . . . , yn) from a Poisson process

with a change point, that is yi ∼ Poi (λ1) for 1 ≤ i ≤ k and yi ∼ Poi (λ2) for

1 + k ≤ i ≤ n for unknown k, λ1 and λ2. As independent prior distributions we

choose k Laplace distributed on {1, . . . n}, λ1 ∼ Γa1,b1 and λ2 ∼ Γa2,b2 gamma

distributed. As a third stage in this hierarchical model we say that b1 ∼ Γ̄c1,d1

and b2 ∼ Γ̄c2,d2 are inverse gamma distributed, and a1, a2, c1, c2, d1 and d2 are

known. From [CGS] we get the conditional distributions

λ1 | y, λ2, b1, b2, k ∼ Γa1+
∑k

i=1 yi,b1/(kb1+1), (6.7)

λ2 | y, λ1, b1, b2, k ∼ Γa2+
∑n

i=k+1 yi,b2/((n−k)b2+1), (6.8)

b1 | y, λ1, λ2, b2, k ∼ Γ̄a1+c1,d1((λ1d1+1), (6.9)

b2 | y, λ1, λ2, b1, k ∼ Γ̄a2+c2,d2((λ2d2+1) (6.10)

and

p (k | y, λ1, λ2, b1, b2) =
e(λ2−λ1)k (λ1/λ2)

∑k
i=1 yi∑n

k′=1 e
(λ2−λ1)k′ (λ1/λ2)

∑k′
i=1 yi

. (6.11)

Note that the first factor in 6.11 can be very large, and the second one very small.

As expected, testing formula 6.11 gave some enormous numerical errors, so that
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we rewrite it to the more expensive, but also numerically more accurate form

p (k | y, λ1, λ2, b1, b2) =(
n∑

k′=1

exp

(
(λ2 − λ1) (k

′ − k) +

(
k′∑
i=1

yi −
k∑

i=1

yi

)
log (λ1/λ2)

))−1

. (6.12)

An example for a data set are the coal-mining disasters in Britain during the

years 1851-1962 from [MPW] and corrected by [Jar]. The complete data can be

found in Table 1.

So we have n = 112, and we choose a1 = a2 = 1/2, c1 = c2 = 0 and d1 = d2 = 1.

Let m = 100 and iterate the algorithm 15 times. From this parameters we

develop the R programme seen in Appendix A.2. This programme gives us an

approximation of the expected value Ek
.
= 47.85836, which is the year 1897.86 or

9 November 1897. This is a slightly different result than the one from [Lee] and

[CGS], who both get values between late 1889 and early 1892. [Lee] suggests that

the change could be a result of the Coal Mines Regulation Act which came into

force on 1 May 1888. Looking at the approximation of the marginal density in

Figure 6 could give a hint in this matter. Apparently there are two peaks in the

density, one of which is around 1889, the other one around 1948. That could mean

that we have two change points in the data. The second one might possibly result

from the radical social reforms introduced by the Labour government 1945-1951

and push the estimate for the first point slightly into the future. The question

arises why [Lee] and [CGS] did not detect this second peak. This might be due to

[Lee]’s simplification of the model into a two-stage hierarchical one and [CGS]’s

numerical instability in their implementation, see equations 6.11 and 6.12.

7. conclusion

We have now constructed the Gibbs sampler and seen some examples. However,

we have said very few about convergence and how fast the algorithm converges.

Most of the recent research on the Gibbs sampler has been concentrating on the
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Year Count Year Count Year Count Year Count

1851 4 1879 3 1907 0 1935 2

1852 5 1880 4 1908 3 1936 1

1853 4 1881 2 1909 2 1937 1

1854 1 1882 5 1910 2 1938 1

1855 0 1883 2 1911 0 1939 1

1856 4 1884 2 1912 1 1940 2

1857 3 1885 3 1913 1 1941 4

1858 4 1886 4 1914 1 1942 2

1859 0 1887 2 1915 0 1943 0

1860 6 1888 1 1916 1 1944 0

1861 3 1889 3 1917 0 1945 0

1862 3 1890 2 1918 1 1946 1

1863 4 1891 2 1919 0 1947 4

1864 0 1892 1 1920 0 1948 0

1865 2 1893 1 1921 0 1949 0

1866 6 1894 1 1922 2 1950 0

1867 3 1895 1 1923 1 1951 1

1868 3 1896 3 1924 0 1952 0

1869 5 1897 0 1925 0 1953 0

1870 4 1898 0 1926 0 1954 0

1871 5 1899 1 1927 1 1955 0

1872 3 1900 0 1928 1 1956 0

1873 1 1901 1 1929 0 1957 1

1874 4 1902 1 1930 2 1958 0

1875 4 1903 0 1931 3 1959 0

1876 1 1904 0 1932 3 1960 1

1877 5 1905 3 1933 1 1961 0

1878 5 1906 1 1934 1 1962 1

Table 1. British coal-mining disasters 1851-1962
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improvement of convergence. Improvement can be gained by different strategies

for forming the sample, visiting and updating the different sites, arranging the

components of θ into blocks and several other strategies, see the references in

[Gam]. In [BBDS] A. Gelman and D. Rubin proved that it is not possible to

get precise results from a single sample series, but that for fast convergence we

always need to run several processes simultaneously. The title of this article

gives a good summary about its main result: “A Single Series from the Gibbs

Sampler Provides a False Sense of Security”. [RS] provide us with several good

results about convergence optimisation. They compared different random and

non-random updating strategies and found out optimal strategies for different

types of applications.

The Gibbs sampler can be used in quite a few different applications. We have

already seen its usefulness in digital image processing and change point analysis.

It is still possible to apply the Gibbs sampler if we have some missing data in the

data that we want to analyse for change points, see for example [CGS], who used

the algorithm on the coal mining data with 20% removed. The Gibbs sampler

can often be applied in hierarchical and dynamic models, see [Gam].
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Appendix A. Source Code and Output

This R source code can also be found on my webpage

http://maths.vic-fontaine.de/ on the Internet.

A.1. The Genetic Linkage Example.

#

# linkage.r (Genetic Linkage Example)

#

# Start algorithm

y <- c(125, 18, 20, 34)

# input data y

integral <- .2357695165e29

# The integral was calculated beforehand using MAPLE

# integral:= int((2+x)^125*(1-x)^(18+20)*x^34, x=0..1);

true <- function(x)((2+x)^y[1]*(1-x)^(y[2]+y[3])*x^y[4]/integral)

# calculate the true posterior

m <- 1600

# take 1600 samples

theta <- runif(m, min=0, max=1)

# get samples from prior distribution

x2 <- rbinom(m, y[1], theta/(theta+2))

# augmentation

posterior <- function(x)(1/m*sum(dbeta(x, x2+y[4], y[2]+y[3])))

# estimate posterior distribution

datax <- (0:1000)

for (i in 1:1001) datax[i] <- (i-1)/1000

datay <- (0:1000)

for (i in 1:1001) datay[i] <- posterior((i-1)/1000)
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x11(record=T)

plot(datax, datay, ylim=c(0,8), type="l",

xlab="theta", ylab="density", main=1)

# plot the estimate

curve(true, 0, 1, n=1001, add=TRUE)

# plot the true posterior to compare it to the estimate

for (j in 1:49)

# execute the algorithm 49 more times

{

decomp <- sample(m, m, replace=TRUE)

# decomposite the estimate according to [KG] section 6.4.2

theta <- (0:1000)

for (i in 1:1001) theta[i] <-

rbeta(1, x2[decomp[i]]+y[4], y[2]+y[3])

x2 <- rbinom(m, y[1], theta/(theta+2))

if ((j==9)|(j==24)|(j==49))

{

posterior <-

function(x)(1/m*sum(dbeta(x, x2+y[4], y[2]+y[3])))

for (i in 1:1001) datay[i] <- posterior((i-1)/1000)

x11(record=T)

plot(datax, datay, ylim=c(0,8), type="l",

xlab="theta", ylab="density", main=j+1)

curve(true, 0, 1, n=1001, add=TRUE)

}

}
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Figure 3. Estimate of the posterior density after 1 execution of

the data-augmentation algorithm for the data (125, 18, 20, 34)

.

A.2. The Coal-Mining Disasters Example.

#

# mining.r (Coal-Mining Disasters Example)

#

# set constants, parameters and data
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Figure 4. Estimate of the posterior density after 10 executions of

the data-augmentation algorithm for the data (125, 18, 20, 34)

.

m <- 100

t <- 15

n <- 112

y <- c(4, 5, 4, 1, 0, 4, 3, 4, 0, 6, 3, 3, 4, 0, 2, 6, 3, 3,

5, 4, 5, 3, 1, 4, 4, 1, 5, 5, 3, 4, 2, 5, 2, 2, 3, 4, 2,

1, 3, 2, 2, 1, 1, 1, 1, 3, 0, 0, 1, 0, 1, 1, 0, 0, 3, 1,
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Figure 5. Estimate of the posterior density after 50 executions of

the data-augmentation algorithm for the data (125, 18, 20, 34)

.

0, 3, 2, 2, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 2, 1, 0, 0,

0, 1, 1, 0, 2, 3, 3, 1, 1, 2, 1, 1, 1, 1, 2, 4, 2, 0, 0,

0, 1, 4, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1)

a1 <- 0.5

a2 <- 0.5

c1 <- 0
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c2 <- 0

d1 <- 1

d2 <- 1

# calculate partial sums that are frequently needed

partsum <- (0:n)

for (i in 2:(n+1))

{

partsum[i] <- partsum[i-1]+y[i-1]

}

# set initial data (arbitrary choices)

k <- (1:m)

l1 <- (1:m)

l2 <- (1:m)

b1 <- (1:m)

b2 <- (1:m)

for (i in 1:m)

{

b1[i] <- 0.5

b2[i] <- 0.5

k[i] <- 56

}

# execute the algorithm t times

for (j in 1:t)

{

# create m independent sequences

for (l in 1:m)

{

# step for lambda_1

l1[l] <- rgamma(1, a1+partsum[k[l]+1],
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b1[l]/(k[l]*b1[l]+1))

# step for lambda_2

l2[l] <-

rgamma(1, a2+partsum[n+1]-partsum[k[l]+1],

b2[l]/((n-k[l])*b2[l]+1))

# step for b_1

b1[l] <- 1/rgamma(1, a1+c1, d1/(l1[l]*d1+1))

# step for b_2

b2[l] <- 1/rgamma(1, a2+c2, d2/(l2[l]*d2+1))

# step for k

# calculate the inverses due to

# overflows in the exponentials

invers <- (1:n)

for (i in 1:n)

{

invers[i] <- 0

for (p in 1:n)

invers[i] <- invers[i] +

exp((l2[l]-l1[l])*(p-i)+

(partsum[p+1]-partsum[i+1])*log(l1[l]/l2[l]))

}

# generate vector with probabilities

prob <- 1/invers

# sample

k[l] <- sample(n,1,prob)

}

}

# Monte Carlo Integration, here only for k

marg <- (1:n)
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for (i in 1:n)

{

marg[i] <- 0

}

for (l in 1:m)

{

# use the same scheme as in the algorithm

invers <- (1:n)

for (i in 1:n)

{

invers[i] <- 0

for (p in 1:n)

invers[i] <- invers[i] +

exp((l2[l]-l1[l])*(p-i)+

(partsum[p+1]-partsum[i+1])*log(l1[l]/l2[l]))

}

prob <- 1/invers

marg <- marg + prob/m

}

# calculate expected value

print(sum((1:n)*marg))

# plot the marginal distribution

plot((1:n),marg)
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Figure 6. Estimate of the marginal density of k using the Gibbs

sampler on the coal mining data.
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