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1. Introduction

Consider any experiment whose result is unknown, for example throwing a coin,
the daily number of customers in a supermarket or the duration of a phone call
in a service office. Each of these experiments has a more or less wide variety of
possible results. The set of all these results is called result space and denoted Ω.
In the examples above we have Ω1 = {head, number}, Ω2 = N and Ω3 = (0,∞).
We cannot forecast for certain, which result the experiment will have, but we can
tell something about the probability of certain results ω ∈ Ω. Often we are not
interested in single results but in subsets A ⊆ Ω containing several results.

We denote the set containing all “interesting” events A ⊆ Ω as A. The A are
called events.

Definition 1.1. A set A ⊆ P (Ω) is called σ-algebra over Ω if

(1) Ω ∈ A,
(2) Ac ∈ A for all A ∈ A and
(3)

⋃
n∈NAn ∈ A for all (An)n∈N ∈ AN.

For E ⊆ P (Ω) let A (E) the smallest σ-algebra containing E, that is

A (E) =
⋂

{A|A is σ-algebra and A⊇E}

A.

In Theorem 1.5 we will see that it is not always possible to choose A = P (Ω).
For countable Ω we will usually choose A = P (Ω), but for uncountable Ω ⊆ R1

we need the Borel σ-algebra

B1 = A
(
(a, b] | a, b ∈ R1

)
or some sub-σ-algebra of it. For Ω ⊆ Rn we have the n dimensional Borel σ-
algebra

Bn = A ({×ni=1Bi | Bi ∈ B}) .
On A we can now define a probability distribution P. We want P to be “real-

istic”; therefore we require some basic properties for it.

Definition 1.2. A function P : A 7→ [0, 1] is called probability distribution
or probability measure for A if

(1) P (Ω) = 1 and
(2) P

(∑
n∈NAn

)
=
∑

n∈N P (An) for all pairwise disjoint (An)n∈N ∈ AN.

Definition 1.3. The triplet (Ω,A,P) where A is a σ-algebra over Ω and P is a
probability distribution for A is called probability space.

We will show some basic properties of probability distributions in the following

Lemma 1.4. Let A,B ∈ A and (An)n∈N ∈ AN. Then we have

(1) P (Ac) = 1− P (A),
(2) P (A ∪B) = P (A) + P (B)− P (A ∩B),
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(3) P (A) ≤ P (B) if A ⊆ B,
(4) P (A \B) = P (B)− P (A) if A ⊆ B and
(5) P (limn→∞An) = limn→∞ P (An) if (An)n∈N is isotonic or antitonic.

Proof. The properties (1)–(4) follow from the definition of a probability distribu-
tion. To show (5) we assume first that (An)n∈N is isotonic. Define A0 = ∅ and
Bn = An \ An−1 for n ∈ N. Then the Bn are pairwise disjoint and we have⋃

n∈N

An =
∑
n∈N

Bn.

Therefore we have

P
(

lim
n→∞

An

)
= P

(⋃
n∈N

An

)
= P

(∑
n∈N

Bn

)
=
∞∑
n=1

P (Bn) =

lim
k→∞

k∑
i=1

P (An \ An−1) = lim
k→∞

k∑
n=1

(P (An)− P (An−1)) = lim
k→∞

P (Ak) .

Now let (An)n∈N be antitonic. Then (Acn)n∈N is isotonic and we have

P
(

lim
n→∞

An

)
= P

(⋂
n∈N

An

)
= 1− P

(⋂
n∈N

Acn

)
=

1− lim
n→∞

P (Acn) = lim
n→∞

P (1− Acn) = lim
n→∞

P (An) .

�

Theorem 1.5. There exists no function P : P ([0, 1])→ [0, 1] such that

(1) P ([a, b]) = b− a for 0 ≤ a ≤ b ≤ 1,
(2) P is translation invariant, that is P (A+ x) = P (A) for all A ∈ P ([0, 1]),

x ∈ [0, 1] such that A+ x ∈ P ([0, 1]) and

(3) P
(∑

n∈NAn
)

=
∑

n∈N P (An) for all pairwise disjoint (An)n∈N ∈ P ([0, 1])N.

Proof. Suppose this function P does exist. Consider the relation ∼ on [1/3, 2/3]
with

x ∼ y ⇐⇒ x− y ∈ Q.
We have x ∼ x for all x ∈ [0, 1] as x− x = 0 ∈ Q. Therefore ∼ is reflexive. The
relation ∼ is symmetric as y− x = − (x− y) ∈ Q whenever x− y ∈ Q. It is also
transitive as from x−y ∈ Q and y− z ∈ Q follows x− z = (x− y) + (y − z) ∈ Q.
Hence ∼ is an equivalence relation. According to Zorn’s Lemma there exists a
set A ∈ P ([0, 1]) containing exactly one element of each equivalence class.

Let the sequence (qn)n∈N count through the rational numbers in the interval
[−1/3, 1/3] and let

An = A+ qn
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for all n ∈ N. We now show that the An are pairwise disjoint. Let

a ∈ Ak ∩ Al
for some k, l ∈ N. This means that both a ∼ qk and a ∼ ql. Since ∼ is transitive,
we also have qk ∼ ql and therefore Ak = Al.

Let x ∈ [2/5, 3/5]. Then can we find some a ∈ A such that x ∼ a. Hence we
find some m ∈ N such that x− a = qm. It follows that x ∈ A+ qm. Therefore we
have

[2/5, 3/5] ⊆
∑
n∈N

An ⊆ [0, 1] .

It follows

1 ≥ P

(∑
n∈N

An

)
=
∑
n∈N

P (An) =
∑
n∈N

P (A),

which means P (A) = 0. This leads to the contradiction

1/5 ≤ P

(∑
n∈N

An

)
= 0.

�

2. Examples for Probability Spaces

In this section we will examine some examples for probability spaces. First we
will look at discrete probability distributions, that is Ω is countable. In this case
we can define pω = P (ω) = P ({ω}) for all ω ∈ Ω; it is called density, in this
special case of a countable result space we call it discrete density function.
The pω are sufficient to describe a distribution, since for every A ∈ A we have
P (A) =

∑
ω∈A pω.

• The most simple distribution for finite Ω and A = P (Ω) is given by
P (A) = |A| / |Ω| for all A ∈ A. The fact that P is a distribution follows
directly from the definition. It is called Laplace distribution.
• Let p ∈ [0, 1], Ω = {1, . . . , n}, A = P (Ω) and pi =

(
n
i

)
pi (1− p)n−i for

1 ≤ i ≤ n. As
n∑
i=0

pi = (p+ (1− p))n = 1,

we have that (pi)i∈Ω is a density. Therefore (Ω,A,P) is a probability space
where P is the corresponding distribution. This distribution is called
binomial distribution and denoted b (n, p).
• For p ∈ (0, 1], Ω = N and A = P (Ω) we can define a density by pi =

p (1− p)i−1 for i ∈ N since
∞∑
i=1

pi =
p

1− p

∞∑
i=1

(1− p)i = 1.



5

The corresponding distribution is called geometrical distribution and
denoted geo (p).
• Let a be a positive real number, Ω = N0, A = P (Ω) and pi = e−aai/i! for
i ∈ N0. We have

n∑
i=0

pi = e−1

n∑
i=0

ai

i!
= 1.

Therefore the pi form a density. The corresponding distribution is called
Poisson distribution and denoted Poi (a).

Now we will give some examples for continuous distributions. In this case we
have Ω = R1 and A = B1. Given a Riemann-integrable function f : R1 →
R1 with

∫∞
−∞ f (x) dx = 1 we define P (A) =

∫
A
f (x) dx, which is therefore

a distribution. The function f is called its density or probability density
function.

A useful tool to describe continuous densities is the characteristic function

1A : Ω→ R1, ω 7→

{
1 ω ∈ A
0 ω 6∈ A

for some A ∈ A.

• The function f = 1[a,b]/ (b− a), where a < b, defines a continuous density
since ∫ ∞

−∞
f (x) dx =

1

b− a

∫ b

a

1 dx = 1.

Its corresponding distribution is called uniform distribution and de-
noted U [a, b].
• Let the function f be defined as f (x) = λe−λx1[0,∞) (x) for some positive

real λ. Since ∫ ∞
−∞

f (x) dx = λ

∫ ∞
0

e−λx dx = 1,

we have a density. Its corresponding distribution is called exponential
distribution and denoted exp (λ).
• The normal distribution is denotedN (µ, σ2) and has the density f (x) =(√

2πσ
)−1

e−(x−µ)2/2σ2
. For

∫∞
−∞ f (x) dx = 1 see [Sch].

More examples for probability distributions can be found in [Sch] and in appen-
dix A.

Both discrete and continuous distributions are special cases of a more general
case. A basic knowledge of measure theory, which can be found in [Bau], is
needed to define the general probability distribution.

Definition 2.1. Let Ω be an arbitrary set with a σ-algebra A. Let µ be a measure
on A. A nonnegative µ-integrable function f with

∫
f dµ = 1 is called µ-density



6

of the probability measure P with

P (A) =

∫
A

f dµ. (2.1)

The Theorem of Radon-Nikodym (see [Bau]) yields for continuous distributions
f = dP /dλ1, where λ1 is the one-dimensional Lebesgue measure, and for discrete
distributions f = dP /dµ, where µ is the counting measure on Ω. Inserting this
into (2.1) gives us

P (A) =

∫
A

dP =

∫
1A dP .

3. Random Variables and Random Vectors

In an experiment the complete result is very often not important or not in-
teresting. For example, when throwing n coins we might not necessarily be
interested in the sequence of heads and numbers ω = (ω1, . . . ωn) but in the num-
ber of heads X (ω) = |{ωi | ωi is head}| or in the average of throwing a head
X̄ (ω) = X (ω) /n.

Definition 3.1. Let (Ω1,A1,P) be a probability space and A2 a σ-algebra over
the set Ω2. A function X : Ω1 → Ω2 is called random variable if

X−1 (A) ∈ A1

for all A ∈ A2. If X is a random variable we write

X : (Ω1,A1)→ (Ω2,A2) .

If Ω2 ⊆ Rn with n ≥ 2, then X is also called random vector. For A ∈ A2 we
define

PX (A) = P
(
X−1 (A)

)
= P (X ∈ A) = P ({ω ∈ Ω1 | X (ω) ∈ A}) .

Lemma 3.2. The function PX is a probability distribution on A2. This gives us
the new probability space

(
Ω2,A2, P

X
)
.

Proof. We have PX (Ω2) = P (X−1 (Ω2)) = P (Ω1) = 1, which is the first condition
of a probability distribution.

Let (An)n∈N ∈ AN
2 pairwise disjoint. Then we have

PX

(∑
n∈N

An

)
= P

(
X−1

(∑
n∈N

An

))
= P

(∑
n∈N

X−1 (An)

)
=∑

n∈N

P
(
X−1 (An)

)
=
∑
n∈N

PX (An).

�

If PX is b (n, p) distributed we can also write X ∼ b (n, p). We use the same
notation for the other distributions introduced in Section 2 and appendix A.
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4. Independence

Definition 4.1. Let (Ω,A,P) be a probability space. The events A1, . . . , An are
called independent if

P (Ai1 ∩ · · · ∩ Aik) = P (Ai1) · · ·P (Aik)

for all 1 ≤ i1 < . . . < ik ≤ n.
The sequence (An)n∈N ∈ AN is called independent if A1, . . . , An is independent

for all n.

With this definition we can formulate and prove the following

Theorem 4.2 (Borel-Cantelli). Let (Ω,A,P) be a probability space and (An)n∈N ∈
AN.

• If
∑∞

n=1 P (An) <∞ then P (lim supn→∞An) = 0.
• If (An)n∈N is independent and

∑∞
n=1 P (An) =∞ then P (lim supn→∞An) =

1.

Proof. Consider

lim
k→∞

P

(
∞⋃
n=k

An

)
≤ lim

k→∞

∞∑
n=k

P (An) = 0.

Lemma 1.4 yields

P

(
lim sup
n→∞

An

)
= P

(
∞⋂
k=1

∞⋃
n=k

An

)
= lim

k→∞
P

(
∞⋃
n=k

An

)
= 0.

To prove the second statement consider (Acn)n∈N, which is independent, as (An)n∈N
is independent as well. From this follows

P

(
lim sup
n→∞

An

)
= 1− P

(
lim inf
n→∞

Acn

)
=

1− lim
k→∞

P

(
∞⋂
n=k

Acn

)
= 1− lim

k→∞

∞∏
n=k

(1− P (An)) = 1.

To see the last equality let pn = P (An) for n ∈ N. If pn = 1 for infinitely many
n this equality is trivial. So let pn < 1 for all n ≥ k for some k ∈ N. Therefore,
as log x ≤ x− 1 for positive x, we have

∞∏
n=k

(1− pn) = exp

(
∞∑
n=k

log (1− pn)

)
≤ exp

(
−
∞∑
n=k

pn

)
= 0,

as
∑
pn =∞. �

Consider, for example, throwing a coin infinitely often. Then Ω = {0, 1}N.
We want to know the probability to throw infinitely often a “1” . Let An =
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{ω ∈ Ω | ωi = 1}, which are independent. Therefore we have P (lim supn→∞An) =
1, as

∑∞
n=1An =

∑∞
n=1

1
2

=∞.
Similarly to the independence of events we can define the independence of

random variables (Xn)n∈N. Such a sequence is called independent if the events
(X−1

n (An))n∈N are independent for every series (An)n∈N with An ∈ Xn (A). In
[Sch] it is proved that if the above statement holds for events An from intersection
stable generators of the Xn (A) then (Xn)n∈N is still independent. Therefore
we have the following easy to check criteria for independence for discrete and
continuous distributions.

The sequence (Xn)n∈N of discrete random variables is independent iff

P

(⋂
n∈N

Xn = xn

)
=
∏
n∈N

P (Xn = xn)

for all xn.
The sequence (Xn)n∈N of continuous random variables is independent iff

P

(⋂
n∈N

Xn ≤ xn

)
=
∏
n∈N

P (Xn ≤ xn)

for all xn.

5. Expected Value and Variance

Often it is of high interest to know the mean expected value of a random
variable, for example when calculation the fair price for a game or forecasting
prices on the stock market. In this article we will only examine the expected
value of random variables X : (Ω,A)→ (R1,B1), although it is possible to define
the expected value also for complex random variables and random vectors.

Definition 5.1. If the expression

EX =

∫
X dP =

∫
R1

id dPX

exists it is called the expected value of X.

For discrete random variables follows immediately EX =
∑∞

n=1 xn P (X = xn)
and for continuous random variables, EX =

∫
R1 xf (x) dx.

The following example demonstrates that the expected value must not neces-
sarily exist. Consider a series of an infinitely often thrown coin. If the coin shows
“1” in the nth throw we get 2n £. The game ends with the first “0” being thrown.

Let (Xn)n∈N be independent identically b
(
1, 1

2

)
distributed on {0, 1}N. For

ω ∈ Ω let Y (ω) be the first position at which a “0” is thrown. Hence we have
P (Y = n) = 1/2n. Let X denote the amount of money we win, that is X =
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2Y − 1 £. The expected amount of money to win from this game would therefore
be

EX =
∞∑
n=0

(2n − 1) P (X = 2n − 1) =
∞∑
n=0

(2n − 1) P (Y = n) =

∞∑
n=0

(2n − 1)
1

2n
=
∞∑
n=0

(
1− 1

2n

)
=∞ £.

We say for an statement A to be P-almost sure and denote this by [P] if there
exists a set N ∈ A such that P (N) = 0 and A is true for all ω ∈ N c. With this
notation we have the following

Lemma 5.2. If EX and EY exist then

(1) E (αX + βY ) = αEX + βEY for all α, β ∈ R1,
(2) Eα = α for all α ∈ R1,
(3) EX ≤ EY if X ≤ Y [P] and
(4) EX = EY if X = Y [P].

These properties follow directly from the general properties of the measure
integral, which can be found in [Bau] and are basically the same as for sums and
Riemann integrals.

Another value of interest is how much a random variable is expected to differ
from its expected value.

Definition 5.3. If V arX = E (X − EX)2 exists it is called the variance of X.

We call
√
V arX the standard deviation of X.

Some examples for the expected value and the variance are in the tables in
appendix A.

6. Conclusion

In this article we have been introduced to probability theory with almost no
references to measure theory. Measure and integration theory provides the key
to understand probability theory. The first two chapters of [Bau] give a very
good introduction into this topic. Further studies of probability theory could
include taking a closer look at the expected value and the variance, proving the
Chebyshev inequality

P (|X − a| ≥ ε) ≤ V arX

ε2

and exmining the convergence properties of sequences of random variables. In
[Sch] we can find a wide variety of topics about probability theory such as condi-
tional probabilities, densities of random vectors, sums of random variables, char-
acteristic functions, the Central Limit Theorem, the Laws of Large Numbers,
stochastic processes and martingals. It provides the knowledge to go deeper into
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special topics like simulated annealing and genetic algorithms, which are a very
good alternative in approaching np complete problems like “travelling salesman”
and find “approximately optimal” solutions, or stochastic differential equations
and Itô integrals, which can be used to forecast prices on the stock market.

Appendix A. Overview of Some Probability Distributions

A.1. Discrete Distributions.

Name binomial distribution
Notation X ∼ b (n, p)

Density pi =
(n
i

)
pi (1− p)n−i for 1 ≤ i ≤ n

Expected Value EX = np
Variance V arX = np (1− p)
Name geometrical distribution

Notation X ∼ geo (p)

Density pi = p (1− p)i−1 for i ∈ N
Expected Value EX = 1

p

Variance V arX = 1−p
p2

Name Poisson distribution

Notation X ∼ Poi (a)

Density pi = e−a a
i

i!
for i ∈ N0

Expected Value EX = a
Variance V arX = a

Name negative binomial distribution
Notation X ∼ b̄ (n, p)

Density pi =
(n+i−1

i

)
pn(1− p)i for i ∈ N0

Expected Value EX =
n(1−p)

p

Variance V arX =
n(1−p)
p2

A.2. Continuous Distributions.

Name uniform distribution
Notation X ∼ U [a, b]

Density f (x) = 1
b−a1[a,b] (x)

Expected Value EX = a+b
2

Variance V arX =
(b−a)2

12
Name exponential distribution

Notation X ∼ exp (λ)
Density f (x) = λe−λx1[0,∞) (x)

Expected Value EX = 1
λ

Variance V arX = 1
λ2

Name normal distribution
Notation X ∼ N

(
µ, σ2

)
Density f (x) = 1√

2πσ
e−(x−µ)2/2σ2

Expected Value EX = µ

Variance V arX = σ2

Name Chi-squared distribution
Notation X ∼ χ2

1

Density f (x) = 1√
2πx

e−x/21(0,∞) (x)

Expected Value EX = 1

Variance V arX = 3
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